Analysis 2
 3 April 2024

Task 1: $\int_{0}^{1} 15 e^{5 y} \mathrm{~d} y=3 e^{5}-3$
Task 2: $\int_{0}^{1} 3 x e^{x y} \mathrm{~d} y=3 e^{x}-3$
This is "new", but you should be able to think (?)'y $=3 x e^{x y}$ and get $\left(3 e^{x y}\right)_{y}^{\prime}=3 x e^{x y}$ in your head.

Task 3: $\int_{0}^{8}\left(3 e^{x}-3\right) \mathrm{d} x=3 e^{8}-27$ This is 100% an Analysis 1 task.
Task 4: $\int_{0}^{8} \int_{0}^{1} 3 x e^{x y} \mathrm{~d} y \mathrm{~d} x=3 e^{8}-27$
This is clearly new, but it's exactly Task 2 followed by

Iterated Integrals

An iterated integral requires evaluating one integral after another. They will always be definite integrals.

- The "inside" integral can give a formula as its answer.
- The "outside" integral will usually give a number as the answer.

In the example $\int_{0}^{8} \int_{0}^{1} 3 x e^{x y} \mathrm{~d} y \mathrm{~d} x$ from the previous slide,

- Inside: $\int_{0}^{1} 3 x e^{x y} \mathrm{~d} y=\left.3 e^{x y}\right|_{y=0} ^{y=1}=3 e^{x \cdot 1}-3 e^{x \cdot 0}=3 e^{x}-3$.
- Outside: $\int_{0}^{8}\left(3 e^{x}-3\right) \mathrm{d} x=3 e^{x}-\left.3 x\right|_{x=0} ^{x=8}=3 e^{8}-27$.
- The "inside" integral can give a formula as its answer.
- The "outside" integral will usually give a number as the answer.

Always write " $x=\ldots$. . or " $y=\ldots$ " when using a vertical line for subtraction.

- $\left.\cos (x)\right|_{0} ^{\pi}$ clearly means $\left.\cos (x)\right|_{x=0} ^{x=\pi}=\cos (\pi)-\cos (0)$, but
- $\left.\cos (x y)\right|_{0} ^{\pi}$ does not make sense (are 0 and π values of x or of y ?).
- The "inside" integral can give a formula as its answer.
- The bounds ($\int_{\text {andere here }}^{\text {her }}$) of inside integrals can include formulas!
- The "outside" integral will usually give a number as the answer.

Example 2: $\int_{-1}^{1} \int_{x^{2}}^{x} 4 x^{4} y \mathrm{~d} y \mathrm{~d} x=\frac{8}{63}$ because

- Inside: $\int_{x^{2}}^{x} 4 x^{4} y \mathrm{~d} y=\left.2 x^{4} y^{2}\right|_{y=x^{2}} ^{y=x}=2 x^{4} x^{2}-2 x^{4}\left(x^{2}\right)^{2}=2 x^{6}-2 x^{8}$.
- Outside: $\int_{-1}^{1}\left(2 x^{6}-2 x^{8}\right) \mathrm{d} x=\frac{2 x^{7}}{7}-\left.\frac{2 x^{9}}{9}\right|_{x=-1} ^{x=1}=\frac{8}{63}$.

Calculations of iterated integrals are never more complicated than Example 2, although of course the anti-derivatives can be harder.

Next week: what does an iterated integral mean, and what tasks require us to use iterated integrals to solve them?

